Hereditarily supercompact spaces

Taras Banakh¹, Zdzisław Kosztołowicz² Sławomir Turek²

¹Institute of Mathematics Jan Kochanowski University in Kielce, POLAND Department of Mathematics Ivan Franko National University of Lviv, UKRAINE ²Institute of Mathematics Jan Kochanowski University in Kielce, POLAND

Winter School, Hejnice 2013

イロト イポト イヨト イヨト

Supercompactness

A topological space X is supercompact if it has a subbase of the topology such that each cover of X by elements of this subbase has a two element subcover (J. de Groot, 1967).

The Alexander Lemma \Rightarrow supercompact space is compact.

Example 1 (of supercompact spaces)

- linearly ordered compact spaces;
- compact metrizable spaces (M. Strok, A. Szymanski; 1975);
- ompact topological groups (C. Mills 1978).

 $\beta\omega$ is not supercompact . A supercompact space has non-trival convergent sequence (E. van Douwen, J. van Mill 1982).

ヘロア 人間 アメヨア 人口 ア

Supercompactness

A topological space X is supercompact if it has a subbase of the topology such that each cover of X by elements of this subbase has a two element subcover (J. de Groot, 1967). The Alexander Lemma \Rightarrow supercompact space is compact.

Example 1 (of supercompact spaces)

- linearly ordered compact spaces;
- compact metrizable spaces (M. Strok, A. Szymanski; 1975);
- ompact topological groups (C. Mills 1978).

 $\beta\omega$ is not supercompact . A supercompact space has non-trival convergent sequence (E. van Douwen, J. van Mill 1982).

<ロト <回 > < 注 > < 注 > 、

Supercompactness

A topological space X is supercompact if it has a subbase of the topology such that each cover of X by elements of this subbase has a two element subcover (J. de Groot, 1967). The Alexander Lemma \Rightarrow supercompact space is compact.

Example 1 (of supercompact spaces)

- linearly ordered compact spaces;
- compact metrizable spaces (M. Strok, A. Szymanski; 1975);
- ③ compact topological groups (C. Mills 1978).

 $\beta\omega$ is not supercompact . A supercompact space has non-trival convergent sequence (E. van Douwen, J. van Mill 1982).

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Supercompactness

A topological space X is supercompact if it has a subbase of the topology such that each cover of X by elements of this subbase has a two element subcover (J. de Groot, 1967). The Alexander Lemma \Rightarrow supercompact space is compact.

Example 1 (of supercompact spaces)

- linearly ordered compact spaces;
- compact metrizable spaces (M. Strok, A. Szymanski; 1975);
- compact topological groups (C. Mills 1978).

 $\beta\omega$ is not supercompact . A supercompact space has non-trival convergent sequence (E. van Douwen, J. van Mill 1982).

ヘロト 人間 とくほとく ほとう

Supercompactness

A topological space X is supercompact if it has a subbase of the topology such that each cover of X by elements of this subbase has a two element subcover (J. de Groot, 1967). The Alexander Lemma \Rightarrow supercompact space is compact.

Example 1 (of supercompact spaces)

- linearly ordered compact spaces;
- compact metrizable spaces (M. Strok, A. Szymanski; 1975);
- compact topological groups (C. Mills 1978).

 $\beta\omega$ is not supercompact . A supercompact space has non-trival convergent sequence (E. van Douwen, J. van Mill 1982).

・ロット (雪) () () () ()

Supercompactness

A topological space X is supercompact if it has a subbase of the topology such that each cover of X by elements of this subbase has a two element subcover (J. de Groot, 1967). The Alexander Lemma \Rightarrow supercompact space is compact.

Example 1 (of supercompact spaces)

- linearly ordered compact spaces;
- compact metrizable spaces (M. Strok, A. Szymanski; 1975);
- compact topological groups (C. Mills 1978).

 $\beta\omega$ is not supercompact . A supercompact space has non-trival convergent sequence (E. van Douwen, J. van Mill 1982).

ヘロト ヘアト ヘビト ヘビト

Supercompactness

- Product of supercompact spaces is supercompact (Cantor cube {0,1}^κ and Tichonoff cube [0,1]^κ are supercompact).
- One-point compactification of topological sum of supercompact spaces is supercompact (Aleksandroff compactification of discrete space αX is supercompact).

A continuous image of a supercompact space need not to be supercompact (J. van Mill & C.F. Mills 1979). There are dyadic spaces (=continuous image of Cantor cube $\{0; 1\}^{\kappa}$) that are not supercompact (M. Bell 1990).

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Supercompactness

- Product of supercompact spaces is supercompact (Cantor cube {0,1}^κ and Tichonoff cube [0,1]^κ are supercompact).
- One-point compactification of topological sum of supercompact spaces is supercompact (Aleksandroff compactification of discrete space \alpha X is supercompact).

A continuous image of a supercompact space need not to be supercompact (J. van Mill & C.F. Mills 1979). There are dyadic spaces (=continuous image of Cantor cube $\{0; 1\}^{\kappa}$) that are not supercompact (M. Bell 1990).

・ロット (雪) () () () ()

Supercompactness

- Product of supercompact spaces is supercompact (Cantor cube {0,1}^κ and Tichonoff cube [0,1]^κ are supercompact).
- One-point compactification of topological sum of supercompact spaces is supercompact (Aleksandroff compactification of discrete space αX is supercompact).

A continuous image of a supercompact space need not to be supercompact (J. van Mill & C.F. Mills 1979). There are dyadic spaces (=continuous image of Cantor cube $\{0; 1\}^{\kappa}$) that are not supercompact (M. Bell 1990).

ヘロン ヘアン ヘビン ヘビン

Hereditarily supercompact spaces

A topological space X is called hereditarily supercompact if each closed subspace of X is supercompact.

T. Banakh, Z. Kosztołowicz, S. Turek Hereditarily supercompact spaces

ヘロト 人間 ト ヘヨト ヘヨト

Simple examles Monotonically normal spaces Scattered space

Which topological spaces are hereditarily supercompact?

Strok, Szymański result implies that: each compact metric space is hereditarily supercompact.

Theorem

A compact topological space X is hereditarily supercompact if X contains a subspace $Z \subseteq X$ such that

- Z is hereditarily supercompact;
- 2 $X \setminus Z$ is discrete.
- Z is a retract of X;

Corollary 1

The Aleksandroff duplicate A(X) of hereditarily supercompact space X is hereditarily supercompact.

Simple examles Monotonically normal spaces Scattered space

Which topological spaces are hereditarily supercompact?

Strok, Szymański result implies that: each compact metric space is hereditarily supercompact.

Theorem

A compact topological space X is hereditarily supercompact if X contains a subspace $Z \subseteq X$ such that

- Z is hereditarily supercompact;
- 2 $X \setminus Z$ is discrete.
- Z is a retract of X;

Corollary 1

The Aleksandroff duplicate A(X) of hereditarily supercompact space X is hereditarily supercompact.

Simple examles Monotonically normal spaces Scattered space

Which topological spaces are hereditarily supercompact?

Strok, Szymański result implies that: each compact metric space is hereditarily supercompact.

Theorem 1

A compact topological space X is hereditarily supercompact if X contains a subspace $Z \subseteq X$ such that

- Z is hereditarily supercompact;
- **2** $X \setminus Z$ is discrete.
- 3 Z is a retract of X;

Corollary 1

The Aleksandroff duplicate A(X) of hereditarily supercompact space X is hereditarily supercompact.

Simple examles Monotonically normal spaces Scattered space

Which topological spaces are hereditarily supercompact?

Strok, Szymański result implies that: each compact metric space is hereditarily supercompact.

Theorem 1

A compact topological space X is hereditarily supercompact if X contains a subspace $Z \subseteq X$ such that

- Z is hereditarily supercompact;
- **2** $X \setminus Z$ is discrete.
- 3 Z is a retract of X;

Corollary 1

The Aleksandroff duplicate A(X) of hereditarily supercompact space X is hereditarily supercompact.

T. Banakh, Z. Kosztołowicz, S. Turek Hereditarily

ヘロト ヘ戸ト ヘヨト ヘヨト

Since there exists a compact and not supercompact space of weight ω_1 , and each non-metrizable dyadic compact space *X* contains a topological copy of the Cantor cube $\{0, 1\}^{\omega_1}$ (Gerlits, Efimov) then:

Proposition 1

A dyadic compact space is hereditarily supercompact if and only if it is metrizable.

Simple examles Monotonically normal spaces Scattered space

More non-trival examples: monotonically normal spaces

Theorem 2

Each monotonically normal compact space is hereditarily supercompact.

Theorem (W. Bula, J. Nikiel, M. Tuncali, E. Tymchatyn)

Each continuous image of a linearly ordered compact space is supercompact.

Theorem (M. E. Rudin)

A compact space is monotonically normal if and only if it is a continuous image of a linearly ordered compact space.

Simple examles Monotonically normal spaces Scattered space

More non-trival examples: monotonically normal spaces

Theorem 2

Each monotonically normal compact space is hereditarily supercompact.

Theorem (W. Bula, J. Nikiel, M. Tuncali, E. Tymchatyn)

Each continuous image of a linearly ordered compact space is supercompact.

Theorem (M. E. Rudin)

A compact space is monotonically normal if and only if it is a continuous image of a linearly ordered compact space.

Simple examles Monotonically normal spaces Scattered space

More non-trival examples: monotonically normal spaces

Theorem 2

Each monotonically normal compact space is hereditarily supercompact.

Theorem (W. Bula, J. Nikiel, M. Tuncali, E. Tymchatyn)

Each continuous image of a linearly ordered compact space is supercompact.

Theorem (M. E. Rudin)

A compact space is monotonically normal if and only if it is a continuous image of a linearly ordered compact space.

ヘロト ヘワト ヘビト ヘビト

Theorem (A. J. Ostaszewski 1978)

Each monotonically normal space X is sub-hereditarily separable space i.e. each separable subspace of X is hereditarily separable.

monotonically normal spaces \subseteq sub-hereditarily separable spaces monotonically normal spaces \subseteq hereditarily supercompact spaces

Question ⁻

Is each hereditarily supercompact space sub-hereditarily separable?

・ロット (雪) () () () ()

Theorem (A. J. Ostaszewski 1978)

Each monotonically normal space X is sub-hereditarily separable space i.e. each separable subspace of X is hereditarily separable.

monotonically normal spaces \subseteq sub-hereditarily separable spaces monotonically normal spaces \subseteq hereditarily supercompact spaces

Question 1

Is each hereditarily supercompact space sub-hereditarily separable?

イロト イポト イヨト イヨト

Theorem (A. J. Ostaszewski 1978)

Each monotonically normal space X is sub-hereditarily separable space i.e. each separable subspace of X is hereditarily separable.

monotonically normal spaces \subseteq sub-hereditarily separable spaces monotonically normal spaces \subseteq hereditarily supercompact spaces

Question 1

Is each hereditarily supercompact space sub-hereditarily separable?

・ロット (雪) () () () ()

Theorem 3 (T.Banakh, Z. Kosztolowicz, S.T.)

Under $\omega_1 < \mathfrak{p}$, each hereditarily supercompact space is sub-hereditarily separable.

 \mathfrak{p} is the smallest cardinality of a base of a free filter \mathcal{F} on a countable set X, which has no infinite pseudo-intersection.

Corollary 2 (MA+¬ CH)

Each separable hereditarily supercompact space is hereditarily separable and hereditarily Lindelöf.

Simple examles Monotonically normal spaces Scattered space

ヘロン 人間 とくほ とくほう

ъ

Scattered space

Theorem (T. Banakh, A. Leiderman 2012)

The class of scattered compact hereditarily paracompact spaces equals to the smallest class \mathcal{A} which contains the singleton and is closed with respect to taking the one-point compactification of a topological sum $\bigoplus_{i \in I} X_i$ of spaces from the class \mathcal{A} .

Proposition 2

For any hereditarily supercompact spaces X_i , $i \in I$, the one-point compactification αX of the topological sum $X = \bigoplus_{i \in I} X_i$ is hereditarily supercompact. In particular, the one-point compactification αD of any discrete space D is hereditarily supercompact.

・ ロ ア ・ 雪 ア ・ 雪 ア ・ 日 ア

ъ

Scattered space

Theorem (T. Banakh, A. Leiderman 2012)

The class of scattered compact hereditarily paracompact spaces equals to the smallest class A which contains the singleton and is closed with respect to taking the one-point compactification of a topological sum $\bigoplus_{i \in I} X_i$ of spaces from the class A.

Proposition 2

For any hereditarily supercompact spaces X_i , $i \in I$, the one-point compactification αX of the topological sum $X = \bigoplus_{i \in I} X_i$ is hereditarily supercompact. In particular, the one-point compactification αD of any discrete space D is hereditarily supercompact.

ヘロマ ヘ動 マイロマ

Scattered space

Theorem (T. Banakh, A. Leiderman 2012)

The class of scattered compact hereditarily paracompact spaces equals to the smallest class A which contains the singleton and is closed with respect to taking the one-point compactification of a topological sum $\bigoplus_{i \in I} X_i$ of spaces from the class A.

Proposition 2

For any hereditarily supercompact spaces X_i , $i \in I$, the one-point compactification αX of the topological sum $X = \bigoplus_{i \in I} X_i$ is hereditarily supercompact. In particular, the one-point compactification αD of any discrete space D is hereditarily supercompact.

イロト 不得 とくほ とくほとう

Theorem 4

Each scattered compact hereditarily paracompact space is hereditarily supercompact.

Theorem (T. Banakh, A. Leiderman 2012)

A scattered compact space is metrizable if and only if it is separable and hereditarily paracompact.

The preceding two theorems motivate the following problem.

Question 2

Is each separable scattered hereditarily supercompact space metrizable?

```
Yes (under MA + \neg CH)
```

イロト 不得 とくほと くほとう

э

Theorem 4

Each scattered compact hereditarily paracompact space is hereditarily supercompact.

Theorem (T. Banakh, A. Leiderman 2012)

A scattered compact space is metrizable if and only if it is separable and hereditarily paracompact.

The preceding two theorems motivate the following problem.

Question 2

Is each separable scattered hereditarily supercompact space metrizable?

Yes (under MA + \neg CH)

ヘロン ヘアン ヘビン ヘビン

Theorem 4

Each scattered compact hereditarily paracompact space is hereditarily supercompact.

Theorem (T. Banakh, A. Leiderman 2012)

A scattered compact space is metrizable if and only if it is separable and hereditarily paracompact.

The preceding two theorems motivate the following problem.

Question 2

Is each separable scattered hereditarily supercompact space metrizable?

Yes (under MA + \neg CH)

Products of hereditarily supercompact spaces

 $\{0,1\}^{\kappa}$ and $[0,1]^{\kappa}$ are not hereditarily supercompact, $\kappa > \omega_0$, since there is a compact zero-dimensional space of weight ω_1 , which is not supercompact.

Is the product of finitely many hereditarily supercompact spaces hereditarily supercompact?

Theorem 5 (T.Banakh, Z. Kosztolowicz,S.T)

Let $X \subseteq [0,1] \times \alpha D$ be a closed subset of the product of the closed unit interval [0,1] and the one-point compactification $\alpha D = \{\infty\} \cup D$ of a discrete space D. If the space X is supercompact, then the subspace $\mathcal{X} = \{X_i : i \in D\}$ is meager in the hyperspace $\exp([0,1])$, where $X_i = \{x \in [0,1]: (x,i) \in X\}$ is the *i*-th section of the set X in the product $[0,1] \times \alpha D$, $i \in D$.

Products of hereditarily supercompact spaces

 $\{0,1\}^{\kappa}$ and $[0,1]^{\kappa}$ are not hereditarily supercompact, $\kappa > \omega_0$, since there is a compact zero-dimensional space of weight ω_1 , which is not supercompact.

Is the product of finitely many hereditarily supercompact spaces hereditarily supercompact?

Theorem 5 (T.Banakh, Z. Kosztolowicz,S.T)

Let $X \subseteq [0,1] \times \alpha D$ be a closed subset of the product of the closed unit interval [0,1] and the one-point compactification $\alpha D = \{\infty\} \cup D$ of a discrete space D. If the space X is supercompact, then the subspace $\mathcal{X} = \{X_i : i \in D\}$ is meager in the hyperspace $\exp([0,1])$, where $X_i = \{x \in [0,1]: (x,i) \in X\}$ is the *i*-th section of the set X in the product $[0,1] \times \alpha D$, $i \in D$.

Products of hereditarily supercompact spaces

 $\{0,1\}^{\kappa}$ and $[0,1]^{\kappa}$ are not hereditarily supercompact, $\kappa > \omega_0$, since there is a compact zero-dimensional space of weight ω_1 , which is not supercompact.

Is the product of finitely many hereditarily supercompact spaces hereditarily supercompact?

Theorem 5 (T.Banakh, Z. Kosztolowicz,S.T)

Let $X \subseteq [0, 1] \times \alpha D$ be a closed subset of the product of the closed unit interval [0, 1] and the one-point compactification $\alpha D = \{\infty\} \cup D$ of a discrete space D. If the space X is supercompact, then the subspace $\mathcal{X} = \{X_i : i \in D\}$ is meager in the hyperspace $\exp([0, 1])$, where $X_i = \{x \in [0, 1]: (x, i) \in X\}$ is the *i*-th section of the set X in the product $[0, 1] \times \alpha D$, $i \in D$.

 $\mathcal{F} = \{X_d \colon d \in D\} \subseteq exp([0, 1]), \mathcal{F} \text{ is non-meager in } exp([0, 1]) \\ \text{and } |\mathcal{F}| = |D| = non(\mathcal{M}), \text{ where } \mathcal{M} \text{ is the ideal of meager sets} \\ \text{in } exp([0, 1])$

$$X = [0,1] \cup \bigcup_{d \in D} (X_d \times \{d\}) \subseteq [0,1] \times \alpha D$$

X is not supercompact.

イロト 不得 とくほ とくほ とう

3

 $\mathcal{F} = \{X_d : d \in D\} \subseteq exp([0, 1]), \mathcal{F} \text{ is non-meager in } exp([0, 1])$ and $|\mathcal{F}| = |D| = non(\mathcal{M})$, where \mathcal{M} is the ideal of meager sets in exp([0, 1])

$$X = [0,1] \cup \bigcup_{d \in D} (X_d \times \{d\}) \subseteq [0,1] \times \alpha D$$

X is not supercompact.

イロト 不得 とくほと くほとう

3